Experimental Observation of the Anderson Metal-Insulator Transition with Atomic Matter Waves
Outline

Solid state physics scope of the Anderson metal-insulator transition
- The Anderson model of disordered solids
- The Anderson metal-insulator transition

Experimental realization of an atom-optics system ≡ disordered solid
- The Kicked Rotor with cold atoms
- The quasiperiodic Kicked Rotor

Experimental demonstration of the Anderson transition
- Direct observation of the crossover
- Characterization of the quantum phase transition
Solid state physics scope
of the Anderson metal-insulator transition
The Anderson model of disordered solids (Anderson, 1958)

\[V_i \psi_i + W \psi_{i-1} + W \psi_{i+1} = \varepsilon_i \psi_i \]

- \(V_i \) random on-site energy \(\leftrightarrow \) disorder
- \(W \) hopping amplitude

Anderson localization: Electronic states are exponentially localized

- In sharp contrast with the perfect crystal case (Bloch waves)
- Interplay between disorder and interference effects
- No interactions
The Anderson Metal-Insulator transition (Abrahams et al., 1979)

Theoretical predictions

- In 1D, wavefunctions always localized (\forall disorder amplitude !)
 - see experiment by J. Billy et al. (Nature, 2008)
- In 3D, disorder induced Metal-Insulator PHASE TRANSITION
 - Numerically observed

Experimental observation?

- No interactions
 - Interactions not included in the Anderson model
- No decoherence sources
 - Decoherence break interference effects
- No direct access to the wave-function
 - Rely on modifications of bulk properties (conductivity)
Experimental realization of an atom-optics systems analog to a disordered solid
The Kicked Rotor

\[H = \frac{p^2}{2} + K \cos x \sum_n \delta(t - n) \]

Classical CHAOTIC DIFFUSION in momentum space

- Looks like a random walk (although perfectly deterministic)
- On average, \(\langle p^2 \rangle \sim Dt \)

\[\equiv 1D-Anderson \] model (Fishman et al., 1982)

- chaos \(\equiv \) pseudo-random disorder
- momentum \(p \equiv \) site \(i \)
- \(K \equiv \) hopping amplitude

K=10

100 kicks

1000 kicks

10000 kicks
Dynamical localization in momentum space

Compare classical and quantum dynamics of the Kicked Rotor

- At long times, the quantum dynamics freezes

\[\langle p^2 \rangle |\Psi(p)|^2 \]

(log scale)

Classical chaotic diffusion ⇐ pseudo-random walk

Quantum dynamical localization

Time \(t \) (number of kicks)
How to observe the Anderson transition in 3D?

Dynamical vs. Anderson localization

- Anderson localization: 1D disordered/static/x-space
- Dynamical localization: 1D chaotic/time-periodic/p-space

Simple idea

- Keep the dynamics 1D, but introduce one or several additional temporal dimensions

\[\hat{H} = \frac{p^2}{2} + k \cos x [1 + \epsilon \cos(\omega_1 t) \cos(\omega_2 t)] \sum_n \delta(\omega_0 t - n) \]

\textbf{Anderson model in higher dimensions (Casati et al., 1989)}

- Prediction for a localized-delocalized Anderson transition when \(K \uparrow \) in a 3 color system
Experimental realization with cold atoms
(F.L. Moore et al., 1994)

\[\hat{H} = \frac{p^2}{2} + k(t) \cos x \]

- Cesium atoms in a standard MOT
 - Atom-atom interactions negligible
 - thermal distribution=narrow initial distribution (few recoil units)
- Pulsed standing wave
 - \(k(t) \propto I(t) \) laser intensity
 - adjustable effective Planck constant \(\hbar_{\text{eff}} \propto T \)
- Negligible decoherence
 - Controllable spontaneous emission rate \(\propto 1/\text{detuning} \)
- Direct access to the atomic momentum distribution
 - velocity selective Raman technique
Experimental observation of the Anderson transition
From localization to diffusive regime

Numerical simulation

- At criticality: anomalous diffusion $\langle p^2 \rangle \sim t^\gamma$, with $\gamma = 2/3$

$|\psi(p)|^2$

(log scale)

$\langle p^2 \rangle$

Time t (number of kicks)

$K = 9$

diffusive regime

$\langle p^2 \rangle \sim Dt$

$K = K_c$

critical regime

$K = 4$

localized regime

$\langle p^2 \rangle \sim p_{loc}^2$
Experimental observation of the crossover

- **Localized state**: \(\langle p^2 \rangle \sim p_{\text{loc}}^2\)
- **Diffusive regime**: \(\langle p^2 \rangle \sim Dt\)
- **Critical regime**: Anomalous diffusion, \(\langle p^2 \rangle \sim t^{2/3}\)
Experimental final momentum distributions \((t = 150 \text{ kicks})\)

Population

- localized (exponential)
- diffusive (Gaussian)
The Anderson transition

A 2nd order phase transition

- Localization length diverges at $K_c^- : p_{\text{loc}} \sim (K_c - K)^{-\nu}$
- Diffusion constant vanishes at $K_c^+ : D \sim (K - K_c)^s$
- Critical exponents related by: $s = \nu$ in 3D (Wegner's law)

Finite time: experiment $t \leq 200$

- Phase (sharp) transition only observable at the thermodynamic limit: $t \to \infty$
- At finite time, (continous) smooth crossover
- One parameter scaling hypothesis (same as for standard thermodynamic phase transitions): $\langle p^2 \rangle \sim t^{k_1} F \left[(K - K_c) t^{k_2} \right]$

- Asymtotic behaviours of F ($t \to \infty$)
 \[\Rightarrow \langle p^2 \rangle \sim t^{2/3} F \left[(K - K_c) t^{1/3\nu} \right] \]
Critical anomalous diffusion

\[\langle p^2 \rangle \sim F \left[(K - K_c) t^{1/3\nu} \right] \Rightarrow \langle p^2 \rangle \sim t^{2/3} \text{ at } K = K_c \]
Finite-time scaling

- Existence of $\xi(K)$ such that: $\frac{\langle p^2 \rangle}{t^{2/3}} = F \left[\frac{\xi(K)}{t^{1/3}} \right]$?
Finite time scaling analysis of numerical results

Scaling function \mathcal{F}

$$\Lambda(K, t) = \frac{\langle p^2 \rangle}{t^{2/3}} \sim \mathcal{F} \left[\frac{\xi(K)}{t^{1/3}} \right]$$

Scaling parameter ξ

- $\xi \sim \rho_{\text{loc}}$ for $K < K_c$
- $\xi \sim 1/D$ for $K > K_c$

Critical point: $K_c \approx 6.6$

Critical exponent: $\nu \approx 1.6 \pm 0.05$
Finite time scaling analysis of experimental results

Scaling function \mathcal{F}

Scaling parameter ξ

First experimental determination of the critical exponent ν

- $1/\xi = \alpha |K - K_c|^{-\nu} + \beta$
- β accounts for decoherence effects
- Critical point: $K_c \approx 6.4$
- Critical exponent: $\nu \approx 1.4 \pm 0.3$
- Excellent agreement with numerics (no adjustable parameter)
see also viewpoint in *Physics* **1**, 41 (2008).

- **Experimental realization** of a matter-wave system ≡ 3D Anderson model
- **Direct observation of the crossover** from a localized state to a diffusive regime
- Numerical and experimental proof for the quasiperiodic Kicked Rotor of the **existence of a one parameter scaling function** ⇒ validates the scaling hypothesis
- **Finite-time scaling analysis** ⇒ **first experimental determination of the critical exponent** ν
Critical exponent universal? Same one as for the usual Anderson model? YES

- Critical exponent does not depend on the specific choice of \hbar, ω_2 and ω_3
- $\nu \simeq 1.6$ compatible with the numerical value found for the standard 3D-Anderson model ($\nu \simeq 1.58$)

Wave function at critical point. Work in progress

What about two dimensions? Work in progress

Adding additional temporal frequencies \Rightarrow Anderson model in 4, 5... Work also in progress.

Interactions between atoms and dynamical localization?